Google Glass

Tag: Google Glass

A look at the future of Augmented Reality from #ARinAction

PPR visited the #ARinAction Industry Summit, which took place at the MIT Media Lab on January 16-17. This is a great event to not only see the future of AR, but also to learn how augmented reality is being applied in industry today. Here are some highlights:

  • Near-instant 3D model creation of interior spaces just a few years away? “In the next year or two there will be devices that can capture a 3D model of a room in a few seconds,” said Mark Billinghurst, Professor of Human Computer Interaction at the University of South Australia. If he’s right, and the models are accurate, this greatly reduces the requirements for 3D model creation in closed spaces, which could be a boon for AR as well as industrial IoT applications that require spatial data.

  • PTC’s Mike Campbell trotted out some industrial AR demos which were slick … yet didn’t look that convincing. For instance, one showed Ford engineers or designers wearing Hololens headsets and looking at data layered on top of a model sports car. It was neat, but it didn’t seem like the value delivered from this experience was superior to screen-based or paper alternatives.

  • PTC wasn’t the only one showing off unconvincing AR demos. One of the academic presenters had an AR tool for demonstrating math and physics concepts to students, which looked cool, yet also seemed complicated and costly. There are not many school systems that could realistically invest in hardware, training, and content to make this work for their students.

  • On the other hand, the DHL augmented reality system demonstrated by PTC seemed to be an effective solution for a real industrial use case. It is used to find and track items in a large logistics operation, and seems more promising, as it’s hands free and speeds the completion of specific tasks. This is similar to the Google Glass system used by AGCO to track completion of manufacturing tasks, and may even be competitive with other IoT logistics systems entering the market, such as ProGlove.

  • Speaking of Google Glass, it was barely mentioned at ARinAction. This surprised me … isn’t Google trying to reposition Glass for industrial use? But then Steven Feiner of Columbia University shared a piece of information that might explain why Glass was MIA from the conference: Google Glass is not really augmented reality: “Google Glass isn’t a true AR display,” Feiner said. “It can’t handle overlays, for one … Doesn’t have stereoscopic view, either.”

  • Solos AR glasses for cycling based on Kopin componentsInnovations from the military are making their way into industrial and consumer devices. John Fan, the CEO of military supplier Kopin presented an example – the heads-up displays used by F-35 pilots have led to technologies that can be used in AR-equipped firefighting helmets from Scott Sight. There was also a prototype cycling AR display (see inset photo) that used Kopin components. Fan shared a relevant observation about helmet-based AR: “Basic premise: humans don’t want to wear things on their heads,” he said, explaining that the technology has to deliver real value to get them to wear headsets … and keep them on. This is true for military and public safety uses in which lives are stake, but perhaps less so for other applications.

  • “Interim devices” are the trend in augmented reality for the next 10 years, according to futurist and author Charlie Fink. “For AR to realize its potential, it needs to know you, and where you are, and it has to have access to data,” Fink said. “We’re not there yet.” He stated that a lack of infrastructure and key breakthroughs are holding back AR.

  • There is a lot of froth in the marketplace. Analyst Tim Merel, a former engineer, noted the arrival of ARKit and other AR tools from Facebook, Tencent, and others, which fuels interest in the field. Nevertheless, “there are even more VCs than there are startups,” he said. Merel noted “mobile AR still at the very early stages” and exits will be relatively small in the near term, as dominant companies have yet to emerge.

Endpoint: It was interesting to see some of the trends and examples in augmented reality, but at the same time there seems to be a lot of wishful thinking among some of the technologists, academics, and investors, not to mention a fair number of research projects or proof-of-concept applications that won’t go anywhere. Just because a technology is cutting edge and dramatic doesn’t mean it will be useful out in the field … or that humans will want to use it.

Interview: ProGlove’s Jonas Girardet

ProGlovePPR recently interviewed Jonas Girardet, the COO and cofounder of Munich-based ProGlove, which makes a wearable IoT device for manufacturing, logistics, and other specialized industrial uses. The system is already in use at BMW, Lufthansa Technik, and other manufacturers and retailers, and recently exhibited at CES. The following interview was edited for clarity and was first published in the PPR newsletter earlier this month. 

PPR: What does the ProGlove do?

Girardet: ProGlove connects the worker to the industrial IoT. We develop smart gloves that enable manufacturing and logistic staff to work faster, safer and easier. If you go to a factory, you’ll see more barcode scanners than any other digital device, such as tablets, smartphones, notebooks, or PCs. Our smart gloves have a connected barcode scanner comfortably attached to the back of the glove to work and scan at the same time and to help workers become more efficient. It makes fewer mistakes when scanning, compared to a normal handheld barcode scanner.

Integration is quite easy, as it’s just text that’s transmitted. It’s plug and play — basically, there is no IT work involved which is nice because the sales cycle gets shorter. And of course it’s nice for the customer, because he can basically rip off the existing scanner, put on the ProGlove, and continue working. You can do that during a coffee break. You don’t have to stop the line, or do a 12-month ERP project.

PPR: Is it complementary to other wearable IoT systems, such as Google Glass?

Girardet: We created ProGlove because of the fast integration and the immediate value to the customer. Today you need to grab the scanning gun, do the scan, put away the scanner, and then do your work. With ProGlove, it’s basically part of your normal movement, so with every scan, you roughly save four seconds. But you have thousands of scans per day. And that’s why production process managers really appreciate the idea, and understand the benefit. And of course we see it as complementary to Google Glass.

PPR: How is the platform being expanded?

Girardet: We will have more hardware products, and we are now developing software products on this hardware platform, that will connect the human worker with industrial IoT.

For 150 years, manufacturing and logistics has been optimized for efficiency. Now we have these highly automated lines and robots. But a robot is not made for a product lifecycle of three months, or a lot-size change within two days from one million to ten million. But you can actually do that with human workers. The downsize nowadays is that human-related work is kind of a black box. The problem is, there is no communicated status of the current work and progress, because the worker are not connected to the rest of the factory. They are left on their own with their fixed tasks. We can improve flexibility and reliability if we change this. not When we connect the human to the IT systems in the factory, we can give the worker real time guidance of his next tasks to do.

PPR: How does connectivity work?

So at the moment we are using a proprietary standard. The most obvious choice would be Bluetooth, but what we learned is that Bluetooth is not widely accepted in industry because it’s operating in the 2.4 Ghz band. Big OEMs try to avoid bringing any device into the industry that is operating in that band. ProGlove has an access point in a little box that connects with your PC or to your network, and then vis Sub 1 Ghz to Mark, which is the scan module.

It’s operating at 915 Mhz  in the U.S. and  868 megahertz in Europe, but the standard itself is a proprietary standard.

PPR: Are you planning to use other LPWAN technologies?

Girardet: We are definitely looking into Bluetooth, because Bluetooth has evolved. When I talked about the spectrum problems, that was Bluetooth 2.1. Now the technology has evolved and is more stable. And we have customers, especially in the fast-moving consumer goods category, and they don’t they don’t have that problem of too many device conflicts because they have only scanners — there is no machinery or tools operating in these frequencies. And of course for us it’s about software that will be able to integrate deeper into manufacturing systems and ERP systems. From a pure hardware standpoint, it will always be Bluetooth or WiFi.

PPR: So ProGlove basically is replacing a standard barcode scanner. But in the future, the platform will bring the data or maybe some other information that’s being captured into other types of systems.

Girardet: That’s the vision. The first step is hardware, and barcode scanning. The second step will be connectivity, so you connect the worker with the system. The worker with the warehouse management system, and the warehouse management system with the worker. So you scan the barcode, and then immediately determine if it’s the right barcode or not. And then you can start to think about data flow.

Our customers at the moment are just thinking about step one. They are starting to think about step two. The data is definitely part of the vision – the human hand can generate a lot of data.

PPR: Talk a little bit about the number of installations or the verticals that you’re really heavily present in.

Girardet: We are from Munich, Germany, and the automotive industry is really strong there. We started to develop our product with BMW and Festo. You can say, almost every BMW from a German factory is built with ProGlove.

So the majority of our customers are in the automotive industry or their suppliers, but also fast-moving consumer goods, such as Rewe-Penny (German Wal-Mart) in Germany, which are using our products in supermarket warehouses. When a supplier ships yogurt to the warehouse, they want to be sure it’s the right kind of yogurt, and the right amount of yogurt gets shipped.

There is also pharmaceuticals. All over the world, laws have changed, so they really need to document more information, such as where the pharmaceutical goods come from. That’s why they scan a lot of barcodes.

As for the number of installations, it’s a few hundred warehouses and manufacturing sites in Europe that are using our product. Germany is our core market, but also the UK, Eastern Europe, and France. But now we are getting ready to jump into the U.S., one of the biggest manufacturing markets. The product is already used here, at the pilot stage.

ProGlove BMW
ProGlove in use at a BMW parts warehouse.

PPR: Does the ProGlove require a systems integrator?

Girardet: Basically it’s plug and play. You can plug it in next to a preexisting barcode system. And it can work with big industrial OEMs.

You can order the US version, we will ship it to you, and you can install it. However, normally we work together with our champions who want to work with the product, so we will do a proof of concept with them. The champion might buy a few units for two or three stations, which will generate a lot of data to see how much time is being saved, economic improvements, and worker acceptance. He can then convince IT, QA, and finance. And then it can scale.

PPR: Can you talk about efficiency metrics?

Girardet: We have the numbers confirmed by OEMs in Europe that it’s basically bringing down the duration of barcode scanning by 40 percent.

Of course, barcodes are only part of the process. But if you think about an auto manufacturing site that has a cycle time of 50 seconds, every 50 seconds the car moves, and then the operator does the same step again. And when they are installing an air bag, they basically have three or four things to do and one these things is scanning a barcode. There might be two barcodes, one on the car and one on the part. And one barcode scan takes eight seconds. And you basically save 40 percent of these 16 seconds, out of a 50-second cycle time. That’s really a lot of time.

That’s really why we have big returns on investments for our customers. There’s always a case for ‘Are you saving money? Are you really more efficient?’ You don’t buy it because it is cool, fancy stuff. You buy it because it is more efficient.

PPR: Last question: where do you see this technology in five years?

Girardet: In manufacturing, and supply chains, there is so much value being added compared to the consumer sector. That’s why I think wearables will really play a massive role in the future of the industrial world. Then of course one of these things will be Glass, something that’s in your eyesight, and the second thing will be in the form of a glove, or on your hand. Think about displaying more information, and also having feedback on the hands.

 

Google Glass never died, it just moved to industry

We all know that IoT is not just about the Nest, Amazon Echo, and Web-connected security cams. But it would be a mistake to discount the importance of consumer technologies.

Email and the Web upended businesses beginning in the 1990s. With the introduction of robust smartphone and tablet platforms, the bring your own device (BYOD) trend disrupted enterprise IT’s outlook for managing security, communications, and specialty applications. Now, we’re starting to see some interesting consumer IoT tech crossing over to the industrial realm.

One of the most fascinating case studies shared at #IoTfM17 was from Peggy Gulick, Director, Business Process Improvement at AGCO Corp, a manufacturer of heavy agricultural equipment such as tractors, combines, and bailers. AGCO had already embraced IT into its production workflows, but it was problematic for operators to have to enter data into tablets or PCs. Here’s why:

  1. Data was entered in fits and starts as operators worked on a process.
  2. The devices often broke – one QA scenario described by Gulick involved placing a ruggedized tablet next to or on top of the treads as they were being inspected, and then revving up the vehicle and inadvertently turning the tablet into a $3,000 pile of broken plastic and silicon.
  3. It’s dangerous enough working around 5-ton vehicles and industrial equipment without having to handle a tablet and look down at the screen every five minutes.
Google Glass enterprise edition. Source: X Company
Google’s spectacles for industrial use.

Enter Google Glass, Enterprise Edition. The wearable, connected glasses were part of the early “wearables” trend in the consumer space, but became a laughing stock after a series of embarrassing privacy incidents (Protip: Wearable video cameras don’t go over well in dive bars). But Glass has enjoyed an unexpected comeback in heavy industry. Gulick showed videos of operators using Glass to check diagrams as they assembled components, or using it as a hands-free QA checklist. According to Gulick, the project has not only reduced process time by 30-35%, it as also led to an unanticipated reduction in training time — from 10 days to 3 days. She adds operators are also working more safely.

Here’s a video Peggy showed at the conference of Glass in action:

That wasn’t the only example of consumer tech making the jump to manufacturing. Jaime Rivera, Software Engineering Manager at flooring manufacturer Shaw Floors Inc., showed a diagram of the company’s data architecture. Holding it all together was Kafka, a scalable, low-latency messaging bus technology that was originally developed at LinkedIn!

Endpoint: Just as consumer tech transformed businesses in the 90s and 2000s, industry has begun to experience technologies originally intended for consumer IoT crossing over to the factory floor. Pay attention to how consumer IoT tech might be adapted to industrial use.